Skip to main content

Interface: AzureAISearchOptions<T>

Embeddings and documents are stored in an Azure AI Search index, a merge or upload approach is used when adding embeddings. When adding multiple embeddings the index is updated by this vector store in batches of 10 documents, very large nodes may result in failure due to the batch byte size being exceeded.

Type Parameters

T extends R

Properties

chunkFieldKey?

optional chunkFieldKey: string

Index field storing the node text

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:118


compressionType?

optional compressionType: KnownVectorSearchCompressionKind

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:108


credential?

optional credential: DefaultAzureCredential | AzureKeyCredential

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:99


docIdFieldKey?

optional docIdFieldKey: string

Index field storing doc_id

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:133


embeddingDimensionality?

optional embeddingDimensionality: number

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:109


embeddingFieldKey?

optional embeddingFieldKey: string

Index field storing the embedding vector

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:122


endpoint?

optional endpoint: string

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:100


filterableMetadataFieldKeys?

optional filterableMetadataFieldKeys: FilterableMetadataFieldKeysType

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:140


hiddenFieldKeys?

optional hiddenFieldKeys: string[]

List of index fields that should be hidden from the client. This is useful for fields that are not needed for retrieving, but are used for similarity search, like the embedding field.

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:139


idFieldKey?

optional idFieldKey: string

Index field storing the id

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:114


indexClient?

optional indexClient: SearchIndexClient

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:104


indexManagement?

optional indexManagement: IndexManagement

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:105


indexMapping()?

optional indexMapping: (enrichedDoc, metadata) => T

(Optional) function used to map document fields to the AI search index fields If none is specified a default mapping is provided which uses the field keys. The keys in the enriched document are: ["id", "chunk", "embedding", "metadata"].

The default mapping is:

  • "id" to idFieldKey
  • "chunk" to chunkFieldKey
  • "embedding" to embeddingFieldKey
  • "metadata" to metadataFieldKey

Parameters

enrichedDoc: BaseNode<Metadata>

The enriched document

metadata: Record<string, unknown>

The metadata of the document

Returns

T

The mapped index document

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:156


indexName?

optional indexName: string

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:103


key?

optional key: string

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:101


languageAnalyzer?

optional languageAnalyzer: string

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:107


metadataStringFieldKey?

optional metadataStringFieldKey: string

Index field storing node metadata as a json string. Schema is arbitrary, to filter on metadata values they must be stored as separate fields in the index, use filterable_metadata_field_keys to specify the metadata values that should be stored in these filterable fields

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:129


searchClient?

optional searchClient: SearchClient<T>

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:106


serviceApiVersion?

optional serviceApiVersion: string

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:102


userAgent?

optional userAgent: string

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:98


vectorAlgorithmType?

optional vectorAlgorithmType: KnownVectorSearchAlgorithmKind

Defined in

packages/llamaindex/src/vector-store/azure/AzureAISearchVectorStore.ts:110